归总应用题
归总应用题
1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).
2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.
3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.
教学重点
使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.
教学难点
学画线段图,并借助线段图分析题中数量关系.
教学过程
一、联系生活实际,以旧引新.
1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.
①单价×数量=总价
②路程÷时间=速度
③工作总量÷工效=工时
学生可能举例:
①一个足球50元,3个足球多少元?
②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?
③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?
2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?
此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?
教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试探索,学习新知.
1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?
学生们自由读题,理解题意.
教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.
学生可能提出:
题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?
这道题可以先求什么?(中间问题)为什么?
求出总数量后,再求什么?为什么?
经同学们思考(也可以小组讨论),师生共同解决.
全班重点讨论下面的问题:
a.线段图怎样画?题中什么数量变了,什么没变?
使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).
b.要求几天修完,必须先求什么?为什么?
[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]
共同解题,说出解题方法.
(学生边回答教师边板书: 这条路全长多少米?
12 × 10 = 120(米)
几天修完?
120 ÷ 15 = 8(天)
综合算式: 12 × 10 ÷ 15
⑤请学生说一说怎样检验?
(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?
12×10÷20=6(天) 12×10÷30=4(天)
12×10÷40=3(天)
(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?
订正:这条路长多少米? 12 × 10 = 120(米).
每天应修多少米? 120 ÷ 6 = 20(米).
综合算式:12×10÷6
全班共同订正,说说你的解题思路,每一步算式的含义.
(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?
12×10÷5=24(米) 12×10÷2=60(米)
2.对比质疑,归纳概括.
教师提问:比较例5、改编题,它们有什么共同点和不同点?
使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.
教师说明:具有以上特点的应用题叫做归总应用题.(出示课题)
三、巩固练习,发展提高.
1.独立完成下题.
①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?
②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?
订正时说说解题的思路各是什么?
2.填表:
解放军列队出操.填出每行人数或行数.(说说解题思路)
每行人数 | 12 | 20 | 45 | |
行数 | 15 | 10 |
四、课堂小结.
今天学习的是什么?你有什么收获?
五、布置作业.
1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?
2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?
板书: