六年级数学教案

首页 - 六年级数学教案

工程问题

时间:2022-10-11 19:08:53 A+

工程问题

工程问题

  1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.

  2.能正确熟练地解答这类应用题.

  3.培养学生运用所学到知识解决生活中的实际问题.

  教学重点

  理解工程问题的数量关系和题目特点,掌握分析、解答方法.

  教学难点

  理解工程问题的数量关系.

  教学过程

  一、复习  旧知.

  (一)解答下面应用题

  1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

  列式:100÷5=20(米)

  2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
 列式:

教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

  学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.

  3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

  列式:100÷20=5(天)

  4.挖一条水渠,每天挖全长的 ,几天可以挖完?

  列式: (天)

  师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.

  二、探索新知.

  (一)教学例9.

  例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  1.教师提问:

  (1)用我们学过的方法怎样分析?怎样解答?

  30÷(30÷10+30÷15)=6(天)

  (2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

  60÷(60÷10+60÷15)=6(天)

  90÷(90÷10+90÷15)=6(天)

  24÷(24÷10+24÷15)=6(天)

  (3)通过计算,你发现了什么?(结果都相同)

  (4)为什么结果都相同呢?

  工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)

  (5)去掉具体的数量,你还能解答吗?

  把这段公路的长看作单位“1”,甲队每天修这段公路的 ,乙队每天修这段公路的 .两队合修,每天可以修这段公路的( )

  列式:

  2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

  3.归纳总结.

  4.小组讨论:工程问题有什么特点?

  工作总量用单位“1”表示,工作效率用 来表示数量关系:工作总量÷工作效率(和)=工作时间

  5.练习.

  (1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

  (2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

  三、巩固练习.

  (一)选择正确的算式.

  一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的 ,需要多少小时?正确列式是(   ).

  1.

  2.

  3.


相关文章

热门推荐