平行线问题
平行线问题
平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段. 正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识. 正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用. 现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”. 在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用. 例1 如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90° 分析 由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2= 过C点作直线 l,使 l∥a(或 b)即可通过平行线的性质实现等角转移. 证 过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以 因为AC平分∠1,BC平分∠2,所以 又∠3=∠CAE,∠4=∠CBF(内错角相等),所以 说明 做完此题不妨想一想这个问题的“反问题”是否成立, 即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?” 由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解. 例2 如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2. 分析 本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即 猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二. 证 过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所示). 因为AA1∥BA2,所以B1E∥BA2.从而 所以 即 ∠A1-∠B1+∠A2=0. 说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有 (即那些向右凸出的角的和=向左凸的角的和)即 进一步可以推广为 这时,连结A1,An之间的折线段共有n段A1B1,B1A2,…,Bn-1An(当然,仍要保持 AA1∥BAn). 推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况. (2)这个问题也可以将条件与结论对换一下,变成一个新问题. 问题1 如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行? 问题2 如图1-25所示.若 这两个问题请同学加以思考. 例3 如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°, 求∠C. 分析 利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标. 解 过F到 FG∥CB,交 AB于G,则 因为 AE∥BD,所以 所以 说明(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧. (2)在学过“三角形内角和”知识后,可有以下较为简便的解法:∠1=∠DFC=∠C+∠2,即 例4 求证:三角形内角之和等于180°. 分析 平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决, 下面方法是最简单的一种. 证 如图1-27所示,在△ABC中,过A引l∥BC,则 显然 ∠1+∠BAC+∠2=平角, 所以 ∠A+∠B+∠C=180°. 说明 事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法. 例5 求证:四边形内角和等于360°. 分析 应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程. 证 如图1-28所示,四边形ABCD中,过顶点B引BE∥AD,BF∥CD,并延长 AB,CB到 H,G.则有∠A=∠2(同位角相等),∠D=∠1(内错角相等),∠1=∠3(同位角相等). 又 ∠ABC(即∠B)=∠GBH(对顶角相等). 由于∠2+∠3+∠4+∠GBH=360°,所以 说明(1)同例3,周角的顶点可以取在平面内的任意位置,证明的本质不变. (2)总结例3、例4,并将结论的叙述形式变化,可将结论加以推广: 人们不禁会猜想: 这个猜想是正确的,它们的证明在学过三角形内角和之后,证明将非常简单. (3)在解题过程中,将一些表面并不相同的问题,从形式上加以适当变形,找到它们本质上的共同之处,将问题加以推广或一般化,这是发展人的思维能力的一种重要方法. 例6 如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证: A,B,C三点在同一条直线上. 分析A,B,C三点在同一条直线上可以理解为∠ABC为平角,即只要证明射线BA与BC所夹的角为180°即可,考虑到以直线l上任意一点为顶点,该点分直线所成的两条射线为边所成的角均为平角,结合所给平行条件,过B作与l相交的直线,就可将l上的平角转换到顶点B处. 证 过B作直线 BD,交l于D.因为AB∥l,CB∥l,所以 又∠1+∠2=180°,所以 即∠ABC=180°=平角. A,B,C三点共线. 思考 若将问题加以推广:在l的同侧有n个点A1,A2,…,An-1,An,且有AiAi+1∥l(i=1,2,…,n-1).是否还有同样的结论? 例7 如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD. 求证:∠3=∠B. 分析 如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得. 证 因为∠1=∠2,所以 因为∠D=90°及EF⊥CD,所以 所以 BC∥EF(平行公理), 所以 1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG. 2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数. 3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么? 4.证明:五边形内角和等于540°. 5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB. |